A Grid-Connected Dual Voltage Source Inverter with Power Quality Improvement Features

Abstract

A voltage regulation and power flow control scheme for a wind energy system (WES) is proposed. A distribution static compensator (DSTATCOM) is utilized for voltage regulation and also for active power injection. The control scheme maintains the power balance at the grid terminal during the wind variations using sliding mode control. A multifunctional power electronic converter for the DG power system is described. This scheme has the capability to inject power generated by WES and also to perform as a harmonic compensator. Most of the reported literature in this area discuss the topologies and control algorithms to provide load compensation capability in the same inverter in addition to their active power injection. When a grid-connected inverter is used for active power injection as well as for load compensation, the inverter capacity that can be utilized for achieving the second objective is decided by the available instantaneous micro-grid real power. Considering the case of a grid-connected PV inverter, the available capacity of the inverter to supply the reactive power becomes less during the maximum solar insolation period. At the same instant, the reactive power...
to regulate the PCC voltage is very much needed during this period. It indicates that providing multi functionalities in a single inverter degrades either the real power injection or the load compensation capabilities.

Existing system

The scheme ensures that unity power factor (UPF) is achieved at the load terminal during nominal operation, which is not possible in the traditional method. Also, the compensator injects lower currents and, therefore, reduces losses in the feeder and voltage source inverter. Further, a saving in the rating of DSTATCOM is achieved which increases its capacity to mitigate voltage sag. Nearly UPF is maintained, while regulating voltage at the load terminal, during load change. The state-space model of DSTATCOM is incorporated with the deadbeat predictive controller for fast load voltage regulation during voltage disturbances. With these features, this scheme allows DSTATCOM to tackle power-quality issues by providing power factor correction, harmonic elimination, load balancing, and voltage regulation based on the load requirement. It uses a three-phase, four-wire, two-level, neutral-point-clamped VSI. This structure allows independent control to each leg of the VSI.
Proposed system

This paper demonstrates a dual voltage source inverter (DVSI) scheme, in which the power generated by the Microgrid is injected as real power by the main voltage source inverter (MVSI) and the reactive, harmonic, and unbalanced load compensation is performed by auxiliary voltage source inverter (AVSI). In the DVSI scheme, as total load power is supplied by two inverters, power losses across the semiconductor switches of each inverter are reduced. This increases its reliability as compared to a single inverter with multifunctional capabilities. Also, smaller size modular inverters can operate at high switching frequencies with a reduced size of interfacing inductor, the filter cost gets reduced. Moreover, as the main inverter is supplying real power, the inverter has to track the fundamental positive sequence of current. This reduces the bandwidth requirement of the main inverter. The inverters in the proposed scheme use two separate dc links. Since the auxiliary inverter is supplying zero sequence of load current, a three phase three-leg inverter topology with a single dc storage capacitor can be used for the main inverter. This in turn reduces the dc-link voltage requirement of the main inverter. Thus, the use of two separate inverters in the proposed DVSI scheme provides increased reliability, better utilization of microgrid power, reduced dc grid voltage rating, less bandwidth requirement of the main inverter, and reduced filter size. Control algorithms are
developed by instantaneous symmetrical component theory (ISCT) to operate DVSI in grid-connected mode, while considering nonstiff grid voltage.

Advantages
- Inject real power to the grid.

Applications
- Distributed generation (DG).
Block diagram
Tools and software

- MPLAB – microcontroller programming.
- ORCAD – circuit layout.
- MATLAB/Simulink – Simulation.